Equivalent binding sites reveal convergently evolved interaction motifs

نویسندگان

  • Andreas Henschel
  • Wan Kyu Kim
  • Michael Schroeder
چکیده

MOTIVATION Much research has been devoted to the characterization of interaction interfaces found in complexes with known structure. In this context, the interactions of non-homologous domains at equivalent binding sites are of particular interest, as they can reveal convergently evolved interface motifs. Such motifs are an important source of information to formulate rules for interaction specificity and to design ligands based on the common features shared among diverse partners. RESULTS We develop a novel method to identify non-homologous structural domains which bind at equivalent sites when interacting with a common partner. We systematically apply this method to all pairs of interactions with known structure and derive a comprehensive database for these interactions. Of all non-homologous domains, which bind with a common interaction partner, 4.2% use the same interface of the common interaction partner (excluding immunoglobulins and proteases). This rises to 16% if immunoglobulin and proteases are included. We demonstrate two applications of our database: first, the systematic screening for viral protein interfaces, which can mimic native interfaces and thus interfere; and second, structural motifs in enzymes and its inhibitors. We highlight several cases of virus protein mimicry: viral M3 protein interferes with a chemokine dimer interface. The virus has evolved the motif SVSPLP, which mimics the native SSDTTP motif. A second example is the regulatory factor Nef in HIV which can mimic a kinase when interacting with SH3. Among others the virus has evolved the kinase's PxxP motif. Further, we elucidate motif resemblances in Baculovirus p35 and HIV capsid proteins. Finally, chymotrypsin is subject to scrutiny wrt. its structural similarity to subtilisin and wrt. its inhibitor's similar recognition sites. SUPPLEMENTARY INFORMATION A database is online at scoppi.biotec.tu-dresden.de/abac/.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to Motifs and Motif Finding

• Biologically speaking, a motif in DNA or RNA (or protein) sequence is a short functional sequence element. • Examples found in genomic DNA include – transcription factor binding sites – small noncoding RNAs – small repetitive elements (e.g. inverted repeats) – common mRNA elements, such as Shine-Dalgarno or Kozak sequences, splice enhancers and suppressors. • We will be strongly tempted to ta...

متن کامل

An introduction to a novel population genetic approach for HIV characterization.

The rapid evolution of the HIV genome is influenced in part by host selection pressure, which may cause parallel evolution among strains under shared selection pressures. To understand the mechanisms behind HIV-host immune escape across host populations, researchers have compared signatures of positive selection pressure on HIV codons across HIV subtypes and across phylogenetic groups of isolat...

متن کامل

Signatures of Pleiotropy, Economy and Convergent Evolution in a Domain-Resolved Map of Human–Virus Protein–Protein Interaction Networks

A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-res...

متن کامل

The SLiMDisc server: short, linear motif discovery in proteins

Short, linear motifs (SLiMs) play a critical role in many biological processes, particularly in protein-protein interactions. Overrepresentation of convergent occurrences of motifs in proteins with a common attribute (such as similar subcellular location or a shared interaction partner) provides a feasible means to discover novel occurrences computationally. The SLiMDisc (Short, Linear Motif Di...

متن کامل

Evolutionary dynamics of prokaryotic transcriptional regulatory networks.

The structure of complex transcriptional regulatory networks has been studied extensively in certain model organisms. However, the evolutionary dynamics of these networks across organisms, which would reveal important principles of adaptive regulatory changes, are poorly understood. We use the known transcriptional regulatory network of Escherichia coli to analyse the conservation patterns of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 2006